Эндокринная функция поджелудочной железы животного

Эндокринная функция поджелудочной железы ее роль в регуляции обмена веществ

Две части находятся в структуре поджелудочной железы, каждая из которых имеет свою функциональную задачу, и экзокринная. Экзокринная часть более объемная по сравнению с эндокринным собратом, и имеет в своем распоряжении 98% общего веса органа.

В этой части продуцируется панкреатический сок, который попадает в кишечник с пищей и помогает ее расщеплять, преобразуя в энергию нашего организма. 2% оставшегося объема железы имеют вкрапления клеток, именуемых панкреатическими островками или островками Лангерганса. В этих клетках синтезируются гормоны, регулирующие метаболизм, т. е. способствуют прохождению различных химических реакций с начала заброса в организм пищи до выброса конечных продуктов из него.

Гормоны участвуют в сложнейшем процессе перевода пищи в жизненную энергию организма. Клетки, вырабатывающие гормоны, не имеют специальных выводных путей. Их секрет сразу всасывается в кровь и разносится по всем органам. Поэтому гормоны поджелудочной железы и их функции важное информационное обеспечение человека необходимыми знаниями.

Клетки поджелудочной железы и продуцируемые ими гормоны

Клетки эндокринной части железы имеют различные виды и каждая из них отвечает за синтез своего гормона.

  • альфа-клетки (Α-клетки) синтезируют глюкагон. Его действие в повышении уровня глюкозы в крови;
  • бета-клетки (Β-клетки) продуцируют инсулин. Он занимается утилизацией глюкозы, удерживая ее подходящий уровень в крови;
  • дельта клетки (Δ-клетки) представляют соматостатин, который является регулирующим гормоном. Он координирует внешнюю и внутреннюю секреторную деятельность железы;
  • РР-клетки вырабатывают панкреатический полипептид, функциональность которого в регулировании желчеотделения, содействие белковому обмену;
  • G-клетки продуцируют гастрин, который воздействует на качество желудочного сока, объема соляной кислоты и пепсина.

Механизм гормонального действия и функции

Вещество С-пептида, не относящееся к гормонам, представляет фрагмент молекулы инсулина. При ее синтезе он отрывается от родной клетки и попадает в кровеносную систему. Его объем эквивалентен объему инсулина.

Поскольку в нем отсутствуют химические реакции, признается наиболее верным показателем нахождения инсулина в крови. В современной медицине на его основе диагностируют диабеты инсулинозависимые и инсулиннезависимые, а также новообразования и печеночные патологии. Поджелудочная железа имеет задачи для всех гормонов, вырабатываемых в ее пределах:

Глюкагон

В задачи которого входит слежение за упадком глюкозы и ее повышением до нормы в крови. Механизм действия:

  • глюкагон стимулирует повышение наличия глюкозы в кровяной системе в результате накапливания в печени и мышцах;
  • глюкагон также стимулирует распад липидов, базирующихся в жировой ткани, благодаря чему появляется новый источник энергии;
  • глюконеогенез, который приводит к рождению глюкозы из неуглеводных компонентов. Он необходим для многих участков, нуждающихся в глюкозе. Здесь можно назвать эритроциты и ткани нервной системы.

Инсулин

Который является ключевым гормоном поджелудочной железы. Его основная цель заключается в понижении глюкозы в составе крови. Понижение использует различные механизмы действия:

  • чтобы донести молекулы глюкозы внутрь клеток, инсулин запускает в работу мембранныерецепторы;
  • заброс излишек глюкозы в закрома печени в виде гликогена. Процесс поддерживается при помощи инсулина;
  • угнетение глюконеогенеза, т. е. не позволяет расщепление из элементов неуглеводных источников глюкозы;
  • инсулин способствует транспортировке в клетку полезных элементов магния, калия, аминокислот, фосфатов;
  • увеличение биосинтеза белка, приглушение его гидролиза, что способствует отсутствию дефицита белка в организме, развитию полноценного иммунитета;
  • инсулин с одной стороны синтезирует жирные кислоты для дальнейшей активации запасов жира, с другой стороны, запрещает их проникновение в кровь. Таким образом, уменьшается объем вредного холестерина, что является профилактикой атеросклероза.

Самотостатин

Поджелудочная железа имеет свой влиятельный тормоз в виде соматостатина на другие свои ферменты и гормоны. Этот гормон образовывается в клетках тонкого кишечника, гипоталамуса, нервной системы. Он поддерживает баланс пищеварения, регулируя этот процесс, благодаря следующим действиям:

  • тормозит движение измельченного провианта из желудка в кишечный тракт;
  • замедляет производство желудочной кислоты и гастрина;
  • угнетает динамичностьподжелудочных ферментов;
  • уменьшает циркуляцию крови в забрюшинном пространстве;
  • подавляет засасывание углеводов из пептическоготракта;
  • понижает уровень глюкагона.

Полипепдид

Поджелудочная железа среди PP-клеток секретирует панкреатический полипептид. По механизму действия он служит антагонистом холецистокина. Подавляя секреторную деятельность железы, стимулирует выработку желудочного сока. Гормон молодой по обнаружению и находится в стадии изучения. То, что уже известно:

  • сдерживание всплеска выкидывания в кровь билирубина, желчи, трипсина;
  • способность расслабления гладкой мускулатуры желчного пузыря;
  • торможение выработки ферментов, участвующих в пищеварении.

Главная задача панкреатического полипептида вырисовывается как экономия пищеварительных ферментов, а также желчи, которая сберегается до следующей трапезы.

Гастрин

Это гормон 2 органов: желудка и поджелудочной железы. По его объему железа имеет в меньшем количестве. Он контролирует работу тех гормонов, которые участвуют в процессе усваивания пищи. Сбои его продуцирования сказываются на работе ЖКТ. Чтобы исключить язвы желудка сдается анализ на гастрин. Гастрин имеет 3 разновидности:

  • большой, имеющий в своем распоряжении 34 аминокислоты;
  • малый, состоящий из 17 аминокислот;
  • гастрин микро, в своем наборе имеет 14 аминокислот.

Важность задач, поставленных перед гормонами

Гормоны вырабатываются помимо поджелудочной железы и другими органами. Всех их объединяет прямой вывод в кровь и распространение по органам совместно с кислородом и питательными элементами. Их необходимость в организме на одной ступеньке с кислородом и питанием. Жизненные процессы не обойдутся без их влияния:

  • рост и регенерация клеток;
  • обменные процессы и получение энергии из пищи;
  • регулирование глюкозы, кальция в крови и другие моменты жизни организма.

Излишек или недостаток любого гормона приведет человека к болезни. Найти причину болезни, а потом еще и лечить, процесс, требующий напряжения усилий. В постановке диагноза поможет врач эндокринолог, который порекомендует пройти комплекс лабораторных анализов, среди которых обязателен биохимический анализ крови, а также анализ на гормоны.

Самый страшный и почти любому человеку знакомый диагноз сахарного диабета. Помимо него, существует немалый перечень патологий, которые тоже не придадут качества жизни. Поджелудочную железу надо беречь. Первым этапом ее патологии является воспаление, которое именуется панкреатит.

Его лечение во многом зависит от питания. Соблюдение диеты главенствует в лечении панкреатита. Если рекомендации по исцелению плохо выполнялись, то патология перейдет в хроническую форму. А дальнейшая судьба железы будет зависеть от владельца.

Если он осознает, к чему приводят ее патологии, во что могут перерасти сбои функционирования, то сможет спасти свой орган. Всегда надо помнить о двойственности задач поджелудочной железы. И нарушение в любой ее части: будь то ферменты или гормоны, незамедлительно скажутся на работе всего организма.

Источник статьи: http://clinica-opora.ru/%D1%82%D0%B5%D1%80%D0%B0%D0%BF%D0%B8%D1%8F/%D0%BF%D0%BE%D0%B4%D0%B6%D0%B5%D0%BB%D1%83%D0%B4%D0%BE%D1%87%D0%BD%D0%B0%D1%8F-%D0%B6%D0%B5%D0%BB%D0%B5%D0%B7%D0%B0-%D0%B4%D0%B2%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82/

Эндокринная функция поджелудочной железы

Строение поджелудочной железы и её эндокринной части. Действие инсулина на обменные процессы в организме. Роль инсулина, глюкагона и соматостатина в гомеостазе. Сущность и клинические проявления гипергликемии и гипогликемии. Типы сахарного диабета.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Учреждение образования «Гомельский государственный медицинский университет»

Кафедра нормальной физиологии

На тему: Эндокринная функция поджелудочной железы

4. Роль инсулина, глюкагона и соматостатина в гомеостазе

5.1 Степени тяжести гипергликемии

6.3 Клинические проявления

6.4 Первая помощь и лечение

Поджелудочная железа расположена на задней стенке брюшной полости, позади желудка и простирается от двенадцатиперстной кишки до ворот селезенки. Длина ее составляет около 15 см, масса — около 100 г. В поджелудочной железе различают головку, располагающуюся в дуге двенадцатиперстной кишки, тело и хвост, достигающий ворот селезенки и лежащий ретроперитонеально. Кровоснабжение поджелудочной железы осуществляется селезеночной и верхней мезентериальной артерией. Венозная кровь поступает в селезеночную и верхнюю мезентериальную вены. Иннервируется поджелудочная железа симпатическими и парасимпатическими нервами, терминальные волокна которых контактируют с клеточной мембраной островковых клеток.

Эндокринная часть поджелудочной железы образована лежащими между ацинусов панкреатическими островками, или островками Лангерганса.

Островки состоят из клеток — инсулоцитов, среди которых на основании наличия в них различных по физико-химическим и морфологическим свойствам гранул выделяют 5 основных видов:

· бета-клетки, синтезирующие инсулин;

· альфа-клетки, продуцирующие глюкагон;

· дельта-клетки, образующие соматостатин;

· D1-клетки, выделяющие ВИП (Вазоактимвный интестинамльный пептимд);

· PP-клетки, вырабатывающие панкреатический полипептид.

Островки Лангерганса, составляют около 1-3 % массы железы (от 1 до 1,5 млн.). Диаметр каждого — около 150 мкм. В одном островке содержится от 80 до 200 клеток. В-клетки локализуются в центре островка, а остальные — по его периферии. Основную массу — 60 % клеток — составляют В-клетки, 25 % — А-клетки, 10 % — D-клетки, остальные — 5 % массы.

Он образуется в В-клетках из его предшественника — проинсулина, который синтезируется на рибосомах грубой эндоплазматической сети. Предшественником проинсулина в процессе его биосинтеза является препроинсулин. Он быстро превращается в проинсулин на полисомах.

Самый мощный стимулятор секреции инсулина — глюкоза, которая взаимодействует с рецепторами цитоплазматической мембраны. Ответ инсулина на ее воздействие является двухфазным: первая фаза — быстрая — соответствует выбросу запасов синтезированного инсулина (1-й пул), вторая — медленная — характеризует скорость его синтеза (2-й пул). Сигнал от цитоплазматического фермента — аденилатциклазы — передается на систему цАМФ, мобилизующую из митохондрий кальция, который принимает участие в освобождении инсулина. Кроме глюкозы, стимулирующим влиянием на освобождение и секрецию инсулина обладают: аминокислоты (аргинин, лейцин), глюкагон, гастрин, секретин, панкреозимин, желудочный ингибирующий полипептид, неиротензин, бомбезин, сульфаниламидные препараты, бета-адреностимуляторы, глюкокортикоиды, СТГ, АКТГ. Подавляют секрецию и освобождение инсулина: гипогликемия, соматостатин, никотиновая кислота, диазоксид, альфа-адреностимуляция, фенитоин, фенотиазины.

Инсулин в крови находится в свободном (иммунореактивный инсулин, ИРИ) и связанном с белками плазмы состоянии. Деградация инсулина происходит в печени (до 80 %), почках и жировой ткани под влиянием глютатионтрансферазы и глютатионредуктазы (в печени), инсулиназы (в почках), протеолитических ферментов (в жировой ткани). Проинсулин также подвергаются деградации в печени, но значительно медленнее.

Инсулин дает множественный эффект на инсулинзависимые ткани (печень, мышцы, жировая ткань). На почечную и нервную ткани, хрусталик, эритроциты он не оказывает непосредственного действия. Инсулин является анаболическим гормоном, усиливающим синтез углеводов, белков, нуклеиновых кислот и жира.

Действие инсулина на углеводный обмен проявляется:

1) повышением проницаемости мембран в мышцах и жировой ткани для глюкозы,

2) активацией утилизации глюкозы клетками;

3) усилением процессов фосфорилирования;

4) подавлением распада и стимуляцией синтеза гликогена;

5) угнетением глюконеогенеза;

6) активацией процессов гликолиза;

Действие инсулина на белковый обмен состоит в:

1) повышении проницаемости мембран для аминокислот;

3) активации в печени синтеза аминокислот;

4) повышении синтеза и подавлении распада белков.

Основные эффекты инсулина на липидный обмен:

1) стимуляция синтеза свободных жирных кислот из глюкозы;

2) стимуляция синтеза триглицеридов;

3) подавление распада жира;

4) активация окисления кетоновых тел в печени.

Биологический эффект инсулина обусловлен его способностью связываться со специфическими рецепторами клеточной цитоплазматической мембраны. После соединения с ними сигнал через встроенный в оболочку клетки фермент — аденилатциклазу — передается на систему АМФ, которая при участии кальция и магния регулирует синтез белка и утилизацию глюкозы.

Базальная концентрация инсулина, определяемая радиоиммунологически, составляет у здоровых 15-20 мкЕД/мл. После пероральной нагрузки глюкозой (100 г) уровень его через 1 ч повышается в 5-10 раз по сравнению с исходным. Скорость секреции инсулина натощак составляет 0,5-1 ЕД/ч, а после приема пищи увеличивается до 2,5-5 ЕД/ч. Секрецию инсулина увеличивает парасимпатическая и уменьшает симпатическая стимуляция.

сахарный диабет гипергликемия гипогликемия инсулин

Он расщепляется в организме при помощи протеолитических ферментов. Секрецию глюкагона регулируют: глюкоза, аминокислоты, гастроинтестинальные гормоны и симпатическая нервная система. Ее усиливают: гипогликемия, аргинин, гастроинтестинальные гормоны, особенно панкреозимин, факторы, стимулирующие симпатическую нервную систему (физическая нагрузка и др.), уменьшение содержания в крови СЖК.

Угнетают продукцию глюкагона: соматостатин, гипергликемия, повышенный уровень СЖК в крови. Содержание глюкагона в крови повышается при декомпенсированном сахарном диабете, глюкагономе. Период полураспада глюкагона составляет 10 мин. Инактивируется он преимущественно в печени и почках путем расщепления на неактивные фрагменты под влиянием ферментов карбоксипептидазы, трипсина, хемотрипсина и др.

Основной механизм действия глюкагона характеризуется увеличением продукции глюкозы печенью путем стимуляции его распада и активации глюконеогенеза. Глюкагон связывается с рецепторами мембраны гепатоцитов и активирует фермент аденилатциклазу, которая стимулирует образование цАМФ. При этом происходит накопление активной формы фосфорилазы, участвующей в процессе глюконеогенеза. Кроме того, подавляется образование ключевых гликолитических ферментов и стимулируется выделение энзимов, участвующих в процессе глюконеогенеза. Другая глюкагонзависимая ткань — жировая. Связываясь с рецепторами адипоцитов, глюкагон способствует гидролизу триглицеридов с образованием глицерина и СЖК. Этот эффект осуществляется путем стимуляции цАМФ и активации гормоночувствительной липазы. Усиление липолизы сопровождается повышением в крови СЖК, включением их в печень и образованием кетокислот. Глюкагон стимулирует гликогенолиз в сердечной мышце, что способствует увеличению сердечного выброса, расширению артериол и уменьшению общего периферического сопротивления, уменьшает агрегацию тромбоцитов, секрецию гастрина, панкреозимина и панкреатических ферментов. Образование инсулина, соматотропного гормона, кальцитонина, катехоламинов, выделение жидкости и электролитов с мочой под влиянием глюкагона увеличиваются. Его базальный уровень в плазме крови составляет 50-70 пг/мл. После приема белковой пищи, во время голодания, при хронических заболеваниях печени, хронической почечной недостаточности, глюкагономе содержание глюкагона увеличивается.

Впервые он был обнаружен в переднем гипоталамусе, а затем — в нервных окончаниях, синаптических пузырьках, поджелудочной железе, желудочно-кишечном тракте, щитовидной железе, сетчатке. Наибольшее количество гормона образуется в переднем гипоталамусе и D-клетках поджелудочной железы. Биологическая роль соматостатина заключается в подавлении секреции соматотропного гормона, АКТГ, ТТГ, гастрина, глюкагона, инсулина, ренина, секретина, вазоактивного желудочного пептида (ВЖП), желудочного сока, панкреатических ферментов и электролитов. Он понижает абсорбцию ксилозы, сократимость желчного пузыря, кровоток внутренних органов (на 30-40 %), перистальтику кишечника, а также уменьшает освобождение ацетилхолина из нервных окончаний и электровозбудимость нервов. Период полураспада парентерально введенного соматостатина составляет 1-2 мин, что позволяет рассматривать его как гормон и нейротрансмиттер. Многие эффекты соматостатина опосредуются через его влияние на вышеперечисленные органы и ткани. Механизм же его действия на клеточном уровне пока неясен. Содержание соматостатина в плазме крови здоровых лиц составляет 10-25 пг/л и повышается у больных сахарным диабетом I типа, акромегалией и при D-клеточной опухоли поджелудочной железы (соматостатиноме).

4. Роль инсулина, глюкагона и соматостатина в гомеостазе

В энергетическом балансе организма основную роль играют инсулин и глюкагон, которые поддерживают его на определенном уровне при различных состояниях организма. Во время голодания уровень инсулина в крови понижается, а глюкагона — повышается, особенно на 3-5-й день голодания (примерно в 3-5 раз). Увеличение секреции глюкагона вызывает повышенный распад белка в мышцах и увеличивает процесс глюконеогенеза, что способствует пополнению запасов гликогена в печени. Таким образом, постоянный уровень глюкозы в крови, необходимый для функционирования мозга, эритроцитов, мозгового слоя почек, поддерживается за счет усиления глюконеогенеза, гликогенолиза, подавления утилизации глюкозы другими тканями под влиянием увеличения секреции глюкагона и уменьшения потребления глюкозы инсулинзависимыми тканями в результате снижения продукции инсулина. В течение суток мозговая ткань поглощает от 100 до 150 г глюкозы. Гиперпродукция глюкагона стимулирует липолиз, что повышает в крови уровень СЖК, которые используются сердечной и другими мышцами, печенью, почками в качестве энергетического материала. При длительном голодании источником энергии становятся и кетокислоты, образующиеся в печени. При естественном голодании (в течение ночи) или при длительных перерывах в приеме пищи (6-12 ч) энергетические потребности инсулинзависимых тканей организма поддерживаются за счет жирных кислот, образующихся во время липолиза.

После приема пищи (углеводистой) наблюдаются быстрое повышение уровня инсулина и уменьшение содержания глюкагона в крови. Первый вызывает ускорение синтеза гликогена и утилизацию глюкозы инсулинзависимыми тканями.

Белковая пища (например, 200 г мяса) стимулирует резкий подъем концентрации в крови глюкагона (на 50-100 %) и незначительный — инсулина, что способствует усилению глюконеогенеза и увеличению продукции глюкозы печенью.

Гимпергликемимя (от др.-греч. хрес — сверху, над; глхкэт — сладкий; б?мб — кровь)— клинический симптом, обозначающий увеличение содержания глюкозы в сыворотке крови по сравнению с нормой в 3,3—5,5 ммоль/л.

5.1 Степени тяжести гипергликемии

Степени тяжести гипергликемии:

· лёгкая гипергликемия — 6,7—8,2 ммоль/л;

· средней тяжести — 8,3—11,0 ммоль/л;

· тяжёлая — свыше 11,1 ммоль/л;

· при показателе свыше 16,5 ммоль/л развивается прекома;

· при показателе свыше 55,5 наступает гиперосмолярная кома.

Для лиц с длительно текущими нарушениями углеводного обмена эти значения могут несколько отличаться.

Сахарный диабет.

Хроническая гипергликемия, которая персистирует независимо от состояния больного, чаще всего бывает в случае сахарного диабета, и фактически является основной характеристикой этого заболевания.

Острый эпизод гипергликемии без видимой причины может показывать на манифестацию сахарного диабета или предрасположению к нему. Эта форма гипергликемии вызвана недостаточным уровнем инсулина. Этот низкий уровень инсулина ингибирует транспорт глюкозы через клеточные мембраны, благодаря чему уровень свободного сахара в крови повышается.

Расстройства питания.

Нарушения в питании могут привести к острой недиабетической гипергликемии, например, при нервной булимии, когда человек не контролирует количество съеденной пищи и, соответственно, получает огромную калорийность за один прием пищи. Таким образом, из пищи поступает большое количество простых и сложных углеводов.

Некоторые лекарственные вещества способны увеличивать риск развития гипергликемии: в-блокаторы, тиазидные диуретики, кортикостероиды, ниацин, фентамидин, ингибиторы протеаз, L-аспарагиназа и некоторые антидепрессанты.

Биотин-авитаминоз также увеличивает риск развития гипергликемии.

Стресс.

У большинства пациентов, перенесших острый стресс (инсульт или инфаркт миокарда), гипергликемия способна развиться даже вне рамок диагноза «сахарный диабет». Наблюдения за пациентами и исследования на животных показали, что подобная постстрессовая гипергликемия ассоциирована с более высокой летальностью при инсульте и инфаркте.

Гипергликемия может развиваться на фоне инфекции и воспалительного процесса или стресса. Запускают этот процесс эндогенные контринсулиновые гормоны (катехоламины, глюкокортикоиды и другие). Поэтому повышение уровня глюкозы в крови не должно сразу расцениваться как сахарный диабет 2-го типа — для начала следует исключить все другие причины (в том числе и сахарный диабет у детей, который часто манифестирует именно в подобных ситуациях).

Уровни глюкозы измеряются в миллиграммах на децилитр (мг/дл) в некоторых странах (например, США, Германия, Япония, Франция, Израиль, Египет, Колумбия); или в миллимолях на литр (ммоль/л), как в странах бывшего СССР.

В публикациях в научных журналах обычно используется ммоль/л. Коэффициент перерасчёта из ммоль/л в мг/дл равен 18. Некоторые примеры соответствия:

Уровни глюкозы изменяются до и после приёмов пищи, и неоднократно в течение дня; определение «нормы» различно. Вообще, нормальный диапазон для большинства людей (здоровые взрослые) является приблизительно 4—7 ммоль/л. Длительные более высокие уровни сахара в крови приводят к поражению кровеносных сосудов и органов, которые они кровоснабжают, приводя к осложнениям диабета. Хроническая гипергликемия может быть измерена с помощью определения уровня гликозилированного гемоглобина.

Следующие признаки могут быть связаны с острой или хронической гипергликемией, первые три включены в классическую гипергликемическую триаду:

· Полидипсия — жажда, особенно чрезмерная жажда

· Полиурия — частое мочеиспускание

· Плохое заживление ран (порезы, царапины, и т.д.)

· Вялотекущие инфекции, плохо поддающиеся стандартной терапии, такие как влагалищный кандидоз или наружный отит

Признаки острой гипергликемии могут включать:

· Обезвоживание из-за глюкозурии и осмотического диуреза.

В большинстве случаев лечение предусматривает введение инсулина, а также лечение основного заболевания, вызвавшего гипергликемию.

Гипогликемимя (от др.-греч. ?рь — снизу, под + глхкэт — сладкий + б?мб —кровь) — патологическое состояние, характеризующееся снижением концентрации глюкозы в крови ниже 3,5 ммоль/л, периферической крови ниже нормы (3,3 ммоль/л), вследствие чего возникает гипогликемический синдром.

· нерациональное питание со злоупотреблением рафинированными углеводами, с резко выраженным дефицитом клетчатки, витаминов, минеральных солей;

· лечение сахарного диабета инсулином, пероральными сахароснижающими препаратами при передозировке;

· недостаточный или поздний прием пищи;

· необычная физическая нагрузка;

· критическая недостаточность органа: почечная, печеночная или сердечная недостаточность, сепсис, истощение;

· гормональная недостаточность: кортизол, гормон роста или они оба, глюкагон + адреналин;

· опухоль (инсулинома) или врождённые аномалии — клеточная гиперсекреция, аутоиммунная гипогликемия, эктопическая секреция инсулина;

· гипогликемии у новорожденных и детей;

· внутривенное введение физраствора капельницей.

Механизм развития гипогликемии может значительно отличаться в зависимости от этиологии. Так, например, при употреблении этанола, наблюдается следующая картина.

Метаболизм этанола в печени катализируется алкогольдегидрогеназой. Кофактором этого фермента служит НАД — вещество, необходимое для глюконеогенеза. Прием этанола приводит к быстрому расходованию НАД и резкому торможению глюконеогенеза в печени. Поэтому алкогольная гипогликемия возникает при истощении запасов гликогена, когда для поддержания нормогликемии особенно необходим глюконеогенез. Такая ситуация наиболее вероятна при недостаточном питании. Чаще всего алкогольная гипогликемия наблюдается у истощенных больных алкоголизмом, но бывает и у здоровых людей после эпизодических приемов большого количества алкоголя или даже небольшой дозы алкоголя, но натощак. Необходимо подчеркнуть, что алкоголь снижает концентрацию глюкозы в плазме больных с нормальной функцией печени. Особенно чувствительны к алкоголю дети.

6.3 Клинические проявления

Вегетативные:

· Возбуждение и повышенная агрессивность, беспокойство, тревога, страх

· Тремор (мышечная дрожь), мышечный гипертонус

· Мидриаз (расширение зрачка)

· Бледность кожных покровов

· Гипертензия (повышение артериального давления).

Источник статьи: http://revolution.allbest.ru/medicine/00338899_0.html

Медицина и человек