Эндокринная функция поджелудочной железы и половых желез

Эндокринная функция поджелудочной железы и ее значение

Экзокринная функция поджелудочной железы осуществляется благодаря функционированию ацинуса. Клетками этого функционального образования продуцируют панкреатический сок.

Помимо экзокринной функции,поджелудочная выполняет эндокринную функцию, заключающуюся в выработке гормонов, участвующих в регуляции обменных процессов организма.

Основными гормонами, продуцируемыми поджелудочной железой, являются инсулин, глюкагон, соматостатин, вазоактивный интестинальный пептид и панкреатический полипептид.

В сутки в результате внешнесекреторной деятельности орган вырабатывает около 1,5-2 литров пищеварительного сока содержащего ферменты участвующих в процессе переваривания пищи.

По системе протоков осуществляется выведение продуцируемого панкреатического сока в просвет двенадцатиперстной кишки.

В составе пищеварительного сока железы содержатся:

  • ферменты, расщепляющие питательные вещества, входящие в состав потребляемой пищи;
  • вода;
  • ионы бикарбоната, способствуют ощелачиванию желудочного сока поступающего в двенадцатиперстную кишку вместе с пищевым комком из желудка.

Секреция ферментов регулируется гормонами вырабатываемыми в кишечнике и желудке.

Активными соединениями, осуществляющими гормональную регуляцию функциональной активности железы являются:

  1. Холецистокинин.
  2. Секретин.
  3. Гастрин.

Экзокринные функции

Говоря о том, какова функция поджелудочной железы в человеческом организме, то первым делом необходимо сказать о прямом ее участии в процессах пищеварения. Именно она занимается синтезом пищеварительных ферментов, обеспечивающих нормальное расщепление и усвоение главных компонентов любой пищи, в роли которых выступают углеводы, белки и жиры. За это отвечает внешнесекреторная функция поджелудочной (также именуется как эндокринная и экскреторная), которая проявляется в виде выработки панкреатического сока, выброс которого производится в 12-перстную кишку. Здесь и осуществляется переваривание фрагментов пищи.

Однако в этом процессе панкреатическому соку также помогает желчь печени, выброс которой тоже осуществляется в 12-перстную кишку. Соединяясь между собой, желчь и панкреатический сок создают мощное «оружие», которым и «разбивают» фрагменты пищи на более мелкие соединения, продвигая их в кишечник. И только здесь происходит отбор – полезные вещества всасываются в кровь, а ненужные выводятся из организма естественным образом – путем дефекации.

В составе панкреатического сока присутствует сразу несколько пищеварительных ферментов:

  • липаза, способствующая расщеплению крупных жировых конгломератов,
  • лактаза, инвертаза, мальтаза и амилаза, обеспечивающие переработку поступающей с пищей глюкозы,
  • трипсин, ответственный за расщепление и усвоение белков.

И рассказывая о том, как работает поджелудочная железа, нужно отметить, что выработка данных пищеварительных ферментов и панкреатического сока активизируется сразу же после того, как пища или напитки попадают в желудок. Сам процесс переваривания занимает от 7 до 12 часов, в зависимости от «тяжести» употребляемых человеком продуктов (белки расщепляются дольше всего).

Синтез пищеварительных ферментов напрямую зависит от состава пищи. В том случае, если в ней находится много белка, то поджелудочная «распознает» это и начинает активно вырабатывать трипсин. Когда же в пище преобладает жир – липазу, углеводы – лактозу, мальтазу, амилазу и инвертазу.

Экзокринные и эндокринные части поджелудочной

Экзокринная функция поджелудочной железы имеет перед собой очень сложную задачу – ей необходимо не только заниматься продуцированием панкреатического сока и пищеварительных ферментов, но и следить также, чтобы их количество соответствовало качеству потребляемой человеком пищи. Таким образом, железа обеспечивает не только нормальное расщепление и усвоение пищи, но и собственную защиту. Ведь если она будет сохранять баланс между объемом вырабатываемого панкреатического сока и употребляемой пищей, то пищеварительные ферменты будут полностью утилизированы.

Если же количество панкреатического сока и ферментов будет превышать то количества, которое необходимо для расщепления пищи, они не будут израсходованы полностью и будут сохраняться в тканях поджелудочной, переваривая ее собственные клетки и провоцируя развитие панкреатита. А это довольно серьезное заболевание, которое трудно поддается лечению.

Поэтому так важно, чтобы поджелудочная сохраняла равновесие между синтезом ферментов и качеством пищи. Так как если этого не будет, возникают серьезные риски возникновения в ней патологических процессов. И чтобы помочь железе правильно функционировать, человек должен постоянно следить за питанием и вести здоровый образ жизни, отказавшись от вредных привычек. Ведь именно эти факторы в 90% случаев являются провокаторами развития большинства болезней поджелудочной железы.

Лечение патологии

Лечение внешнесекреторной недостаточности поджелудочной железы, как правило, комплексное. Оно включает в себя коррекцию нутритивного статуса, заместительную и этиотропную терапию, а также симптоматическое лечение. На предупреждение прогрессирования гибели клеток железы направлена этиотропная терапия. Коррекция образа жизни заключается в исключении потребления спиртного и табакокурения. Предусмотрено также увеличение количества в рационе белка, сокращение объема жиров, прием витаминов.

Основным методом лечения при хр. панкреатите является заместительный прием ферментов (пожизненно). Показанием к заместительной терапии ферментами выступает стеаторея с утратой более 15 г жира в день, белково-энергетическая недостаточность прогрессирующего характера.

Наибольшей эффективностью обладают микрогранулированные ферментные средства в кислотоустойчивых оболочках и в желатиновых капсулах, которые растворяются в желудке, обеспечивая условия для равномерного смешивания гранул медикамента с пищей. Дозировки таких лекарств подбираются индивидуально и зависят от тяжести заболевания, активности панкреатической секреции.

Эндокринные функции

Внутрисекреторные функции поджелудочной железы не могут происходить без особых веществ – гормонов, продуцированием которых также занимается этот орган. Данная функция именуется эндокринной (внутренняя секреторная функция) и ее активизация также во многом зависит от пищи, которую ест человек в течение всего дня. Однако нужно отметить, что гормоны, которые синтезирует железа, не попадают в органы пищеварения. Их выброс производится в кровь, где и отмечается гуморальная регуляция организма на них.

Клетки, синтезирующие гормоны находятся внутри островков Лангерганса

Эндокринная функция поджелудочной железы выполняется посредством специальных клеток, численность которых не превышает 2% от всего тела органа. Эти клетки образуют скопления, которые в медицине именуются островками Лангерганса.

Существует всего 5 видов клеток, отвечающих за выработку гормонов:

Строение поджелудочной железы

  • альфа-клетки – осуществляют секрецию глюкагона,
  • бета-клетки – вырабатывают инсулин,
  • дельта-клетки – продуцируют соматостатин,
  • Д1-клетки – обеспечивают человеческий организм вазоактивными интестинальными полипептидами,
  • РР-клетки – синтезируют панкреатический полипептид.

Без этих гормонов работа поджелудочной железы и обменные процессы в организме не могут происходить нормально. Ведь именно они регулируют обмен веществ, а также поддерживают работу почек, кишечника, печени и 12-перстной кишки.

Наиболее известным среди далеких от медицины людей является гормон инсулин. Его выделение в кровь обеспечивает нормализацию уровня глюкозы в крови. Он связывается с молекулами глюкозы, разбивает их на более мелкие структуры и поставляет в клетки и ткани организма, тем самым насыщая их энергией. Если работа бета-клеток нарушается, формируется недостаточность инсулина, которая приводит к увеличению концентрации микрокристалликов сахара в крови и является провокатором развития сахарного диабета и резкого снижения веса. Ведь вместо того чтобы растрачивать энергию, которую клеткам предоставил инсулин, они начинают использовать в качестве топлива жир, что приводит к дистрофии жировой ткани.

Эндокринная функция поджелудочной железы играет очень важную роль в человеческом организме. Несмотря на то что ее выполнением занимается небольшое количество клеток, без нее не могут происходить ни одни процессы в организме. Так как внутрисекреторная функция проявляется в гуморальном управлении, которое является эволюционным ранним способ управления организма. Поджелудочная синтезирует гормоны, выбрасывает их в кровь и обеспечивает гормональное равновесие. В результате этого регулируется работа всех внутренних органов и систем.

Абсолютная недостаточность

Абсолютная недостаточность вызвана уменьшением объема паренхимы (внутренняя структура органа) поджелудочной железы, из-за которого угнетается секреция гормона. Причина относительной недостаточности – сужение просвета протоков поджелудочной железы и как следствие этого, плохое поступление поджелудочного сока в кишечник. Эта недостаточность неопасна. В данном случае, железа работает нормально и лечения не требуется. Требуется лечить основное заболевание, которое препятствует активации сока в кишечнике, например наличие камней в протоках, синдром раздраженного кишечника.

Связь функциональности поджелудочной железы с ее расположением

Поджелудочная железа представляет собой уникальный орган, выполняющий несколько функций в человеческом организме, которые, на первый взгляд, вообще не имеют логической связи между собой. Такое явление ученые воспринимают как следствие эволюции функций и органов. У некоторых видов позвоночных животных эти функции выполняют сразу несколько внутренних органов. Но у некоторых видов, в том числе и у человека, пищеварительные и эндокринные функции концентрируются в одном – в поджелудочной.

Строение поджелудочной железы

Несмотря на то что функции поджелудочной железы в организме человека разнообразны, основной принято считать пищеварительную функцию. Особенность расположения размещения поджелудочной актуален для системы пищеварения. Ведь очень важно, чтобы пищеварительные ферменты, вырабатывающиеся этим органом, как можно быстрее поступали в 12-перстную кишку, так как активизация их функций возникает сразу же после синтеза. В этот же орган должна поставлять желчь, которую вырабатывает печень.

Поджелудочная железа у человека располагается в так называемой петле, которая формируется желудком и 12-перстной кишкой. С правой стороны от желудка находится печень. Эти органы соединяются между собой особыми протоками, по которым и производится транспортировка желчи и панкреатического сока в 12-перстную кишку.

Функции, за которые отвечает поджелудочная, и ее строение взаимосвязаны между собой. И чтобы пищеварительные ферменты быстрее проникали в 12-перстную кишку, головка железы располагается недалеко от этого органа. А другие части поджелудочной, которые не выполняют пищеварительные функции, привязаны к ее головке и располагаются с левой стороны.

Поджелудочная железа в организме человека является самой большой железой и объединяет в себе сразу несколько функций и структур. И если отвечать на вопрос, что же делает этот орган и какова его функциональность, то за этим последует очень длинный ответ, который сведется к одной простой фразе – участвует в синтезе пищеварительных ферментов и гормонов, необходимых для секреторного управления деятельности всего организма.

Панкреатит как причина патологии

Хронический панкреатит – основной фактор, приводящий к ферментной недостаточности. Это поражение поджелудочной железы воспалительно-деструктивного генеза, приводящее к нарушениям ее функций. Каковы последствия панкреатита, мало кто знает. При обострении заболевания возникает боль в животе и левом подреберье, наблюдаются диспепсические явления, желтушность склер и кожного покрова.

Основными причинами развития панкреатита у взрослых (код по МКБ-10 К86) являются желчекаменная болезнь и злоупотребление алкоголем, который довольно токсичен для паренхимы этого органа. При желчекаменной болезни воспалительный процесс становится следствием перехода инфекции из желчевыводящих протоков в железу по лимфатическим сосудам, развитием гипертензии желчных путей либо забросом желчи в железу.

Консервативное лечение данного заболевания включает в себя комплекс мер. В основе терапии лежат следующие принципы:

  • обязательна диета;
  • недостаточность поджелудочной железы подлежит коррекции;
  • болевой синдром нужно устранить;
  • осложнения должны быть предупреждены.

При лечении панкреатита необходимо исключить употребление алкоголя, прием лекарственных препаратов, способных оказывать повреждающее воздействие на поджелудочную железу (антибиотики, антидепрессанты, сульфаниламиды, диуретики: гипотиазид и фуросемид, непрямые антикоагулянты, индометацин, бруфен, парацетамол, глюкокортикоиды, эстрогены и многие другие).

Последствия панкреатита могут быть различными: внешнесекреторная недостаточность железы, обтурационная желтуха, портальная гипертензия, инфекции (парапанкреатит, абсцесс, флегмона забрюшинной клетчатки, воспаление желчевыводящих путей), внутренние кровотечения. С развитием данного заболевания могут возникать также сахарный диабет, снижение массы тела, рак поджелудочной железы.

Методы диагностики

Поджелудочная железа является примером железы смешанной секреции. Оценка ее работы в лабораторных условиях – это довольно сложная задача, особенно если проблема касается патологий панкреатической системы.

В основном клинические симптомы и анамнез способны описать состояние эндокринных и экзокринных систем в железе. Если есть необходимость изучить изменения в структуре органа, тогда используются инструментальные обследования.

Для определения состояния и работоспособности экзокринной системы используют зондовые или беззондовые методы. Зондовые методы призваны оценить ферментную активность, а беззондовые – определить эффективность пищеварения.

Копрологическое исследование позволяет второстепенными методами определить работу экзокринной системы. Основным признаком недостаточности секретов железы является такое следствие, как полифекалия. Признаки этого заключаются в изменениях вида каловых масс. Они становятся кашеобразными, серого цвета, сального вида, нехорошо пахнут и плохо смываются со стенок унитаза.

Альтернативной методикой также является анализ, основанный на иммуноферментном принципе. Он позволяет определить количество панкреатической эластазы в кале. Состояние экзокринной системы напрямую зависит от активности этого фермента в кале. Это связано с тем, что он не участвует в обменных процессах кишечника и тем самым исключает ошибки, связанные с активностью ферментов в кишечнике. Чувствительность вышеописанного теста составляет порядка 90%.

Поджелудочная железа расположена на задней стенке брюшной полости, позади желудка, на уровне L1-L2 и простирается от двенадцатиперстной кишки до ворот селезенки. Длина ее составляет около 15 см, масса – около 100 г. В поджелудочной железе различают головку, располагающуюся в дуге двенадцатиперстной кишки, тело и хвост, достигающий ворот селезенки и лежащий ретроперитонеально. Кровоснабжение поджелудочной железы осуществляется селезеночной и верхней мезентериальной артерией. Венозная кровь поступает в селезеночную и верхнюю мезентериальную вены. Иннервируется поджелудочная железа симпатическими и парасимпатическими нервами, терминальные волокна которых контактируют с клеточной мембраной островковых клеток.

Поджелудочная железа обладает экзокринной и эндокринной функцией. Последняя осуществляется островками Лангерганса, которые составляют около 1-3 % массы железы (от 1 до 1,5 млн). Диаметр каждого – около 150 мкм. В одном островке содержится от 80 до 200 клеток. Различают несколько их видов по способности секретировать полипептидные гормоны. А-клетки продуцируют глюкагон, В-клетки – инсулин, D-клетки – соматостатин. Обнаружен еще ряд островковых клеток, которые предположительно могут продуцировать вазоактивный интерстициальный полипептид (ВИП), гастроинтестинальный пептид (ГИП) и панкреатический полипептид. В-клетки локализуются в центре островка, а остальные – по его периферии. Основную массу – 60 % клеток – составляют В-клетки, 25 % – А-клетки, 10 % – D-клетки, остальные – 5 % массы.

Инсулин образуется в В-клетках из его предшественника – проинсулина, который синтезируется на рибосомах грубой эндоплазматической сети. Проинсулин состоит из 3 пептидных цепей (А, В и С). А- и В-цепочки соединены дисульфидными мостиками, С-пептид связывает А- и В-цепи. Молекулярная масса проинсулина – 9000 дальтон. Синтезированный проинсулин поступает в аппарат Гольджи, где под влиянием протеолитических ферментов расщепляется на молекулу С-пептида с молекулярной массой 3000 дальтон и молекулу инсулина с молекулярной массой 6000 дальтон. А-цепь инсулина состоит из 21 аминокислотного остатка, В-цепь – из 30, а С-пептид – из 27-33. Предшественником проинсулина в процессе его биосинтеза является препроинсулин, который отличается от первого наличием еще одной пептидной цепочки, состоящей из 23 аминокислот и присоединяющейся к свободному концу В-цепи. Молекулярная масса препроинсулина – 11 500 дальтон. Он быстро превращается в проинсулин на полисомах. Из аппарата Гольджи (пластинчатый комплекс) инсулин, С-пептид и частично проинсулин поступают в везикулы, где первый связывается с цинком и депонируется в кристаллическом состоянии. Под влиянием различных стимулов везикулы продвигаются к цитоплазматической мембране и путем эмиоцитоза освобождают инсулин в растворенном виде в прекапиллярное пространство.

Самый мощный стимулятор его секреции – глюкоза, которая взаимодействует с рецепторами цитоплазматическои мембраны. Ответ инсулина на ее воздействие является двухфазным: первая фаза – быстрая – соответствует выбросу запасов синтезированного инсулина (1-й пул), вторая – медленная – характеризует скорость его синтеза (2-й пул). Сигнал от цитоплазматического фермента – аденилатциклазы – передается на систему цАМФ, мобилизующую из митохондрий кальций, который принимает участие в освобождении инсулина. Кроме глюкозы, стимулирующим влиянием на освобождение и секрецию инсулина обладают аминокислоты (аргинин, лейцин), глюкагон, гастрин, секретин, панкреозимин, желудочный ингибирующии полипептид, неиротензин, бомбезин, сульфаниламидные препараты, бета-адреностимуляторы, глюкокортикоиды, СТГ, АКТГ. Подавляют секрецию и освобождение инсулина гипогликемия, соматостатин, никотиновая кислота, диазоксид, альфа-адреностимуляция, фенитоин, фенотиазины.

Инсулин в крови находится в свободном (иммунореактивный инсулин, ИРИ) и связанном с белками плазмы состоянии. Деградация инсулина происходит в печени (до 80 %), почках и жировой ткани под влиянием глютатионтрансферазы и глютатионредуктазы (в печени), инсулиназы (в почках), протеолитических ферментов (в жировой ткани). Проинсулин и С-пептид также подвергаются деградации в печени, но значительно медленнее.

Инсулин дает множественный эффект на инсулинзависимые ткани (печень, мышцы, жировая ткань). На почечную и нервную ткани, хрусталик, эритроциты он не оказывает непосредственного действия. Инсулин является анаболическим гормоном, усиливающим синтез углеводов, белков, нуклеиновых кислот и жира. Его влияние на углеводный обмен выражается в увеличении транспорта глюкозы в клетки инсулинзависимых тканей, стимуляции синтеза гликогена в печени и подавлении глюконеогенеза, и гликогенолиза, что вызывает понижение уровня сахара в крови. Влияние инсулина на белковый обмен выражается в стимуляции транспорта аминокислот через цитоплазматическую мембрану клеток, синтеза белка и торможения его распада. Его участие в жировом обмене характеризуется включением жирных кислот в триглицериды жировой ткани, стимуляцией синтеза липидов и подавлением липолиза.

Биологический эффект инсулина обусловлен его способностью связываться со специфическими рецепторами клеточной цитоплазматическои мембраны. После соединения с ними сигнал через встроенный в оболочку клетки фермент – аденилатциклазу – передается на систему цАМФ, которая при участии кальция и магния регулирует синтез белка и утилизацию глюкозы.

Базальная концентрация инсулина, определяемая радиоиммунологически, составляет у здоровых 15-20 мкЕД/мл. После пероральной нагрузки глюкозой (100 г) уровень его через 1 ч повышается в 5-10 раз по сравнению с исходным. Скорость секреции инсулина натощак составляет 0,5-1 ЕД/ч, а после приема пищи увеличивается до 2,5-5 ЕД/ч. Секрецию инсулина увеличивает парасимпатическая и уменьшает симпатическая стимуляция.

Глюкагон является одноцепочечным полипептидом с молекулярной массой 3485 дальтон. Он состоит из 29 аминокислотных остатков. Расщепляется в организме при помощи протеолитических ферментов. Секрецию глюкагона регулируют глюкоза, аминокислоты, гастроинтестинальные гормоны и симпатическая нервная система. Ее усиливают гипогликемия, аргинин, гастроинтестинальные гормоны, особенно панкреозимин, факторы, стимулирующие симпатическую нервную систему (физическая нагрузка и др.), уменьшение содержания в крови СЖК.

Угнетают продукцию глюкагона соматостатин, гипергликемия, повышенный уровень СЖК в крови. Содержание глюкагона в крови повышается при декомпенси-рованном сахарном диабете, глюкагономе. Период полураспада глюкагона составляет 10 мин. Инактивируется он преимущественно в печени и почках путем расщепления на неактивные фрагменты под влиянием ферментов карбоксипептидазы, трипсина, хемотрипсина и др.

Основной механизм действия глюкагона характеризуется увеличением продукции глюкозы печенью путем стимуляции его распада и активации глюконеогенеза. Глюкагон связывается с рецепторами мембраны гепатоцитов и активирует фермент аденилатциклазу, которая стимулирует образование цАМФ. При этом происходит накопление активной формы фосфорилазы, участвующей в процессе глюконеогенеза. Кроме того, подавляется образование ключевых гликолитических ферментов и стимулируется выделение энзимов, участвующих в процессе глюконеогенеза. Другая глюкагонзависимая ткань – жировая. Связываясь с рецепторами адипоцитов, глюкагон способствует гидролизу триглицеридов с образованием глицерина и СЖК. Этот эффект осуществляется путем стимуляции цАМФ и активации гормоночувствительной липазы. Усиление липолиза сопровождается повышением в крови СЖК, включением их в печень и образованием кетокислот. Глюкагон стимулирует гликогенолиз в сердечной мышце, что способствует увеличению сердечного выброса, расширению артериол и уменьшению общего периферического сопротивления, уменьшает агрегацию тромбоцитов, секрецию гастри-на, панкреозимина и панкреатических ферментов. Образование инсулина, соматотропного гормона, кальцитонина, катехоламинов, выделение жидкости и электролитов с мочой под влиянием глюкагона увеличиваются. Его базальный уровень в плазме крови составляет 50-70 пг/мл. После приема белковой пищи, во время голодания, при хронических заболеваниях печени, хронической почечной недостаточности, глюкагономе содержание глюкагона увеличивается.

Соматостатин представляет собой тетрадекапептид с молекулярной массой 1600 дальтон, состоящий из 13 аминокислотных остатков с одним дисульфидным мостиком. Впервые соматостатин был обнаружен в переднем гипоталамусе, а затем – в нервных окончаниях, синаптических пузырьках, поджелудочной железе, желудочно-кишечном тракте, щитовидной железе, сетчатке. Наибольшее количество гормона образуется в переднем гипоталамусе и D-клетках поджелудочной железы. Биологическая роль соматостатина заключается в подавлении секреции соматотропного гормона, АКТГ, ТТГ, гастрина, глюкагона, инсулина, ренина, секретина, вазоактивного желудочного пептида (ВЖП), желудочного сока, панкреатических ферментов и электролитов. Он понижает абсорбцию ксилозы, сократимость желчного пузыря, кровоток внутренних органов (на 30-40 %), перистальтику кишечника, а также уменьшает освобождение ацетилхолина из нервных окончаний и электровозбудимость нервов. Период полураспада парентерально введенного соматостатина составляет 1-2 мин, что позволяет рассматривать его как гормон и нейротрансмиттер. Многие эффекты соматостатина опосредуются через его влияние на вышеперечисленные органы и ткани. Механизм же его действия на клеточном уровне пока неясен. Содержание соматостатина в плазме крови здоровых лиц составляет 10-25 пг/л и повышается у больных сахарным диабетом I типа, акромегалией и при D-клеточной опухоли поджелудочной железы (соматостатиноме).

Роль инсулина, глюкагона и соматостатина в гомеостазе. В энергетическом балансе организма основную роль играют инсулин и глюкагон, которые поддерживают его на определенном уровне при различных состояниях организма. Во время голодания уровень инсулина в крови понижается, а глюкагона – повышается, особенно на 3-5-й день голодания (примерно в 3-5 раз). Увеличение секреции глюкагона вызывает повышенный распад белка в мышцах и увеличивает процесс глюконеогенеза, что способствует пополнению запасов гликогена в печени. Таким образом, постоянный уровень глюкозы в крови, необходимый для функционирования мозга, эритроцитов, мозгового слоя почек, поддерживается за счет усиления глюконеогенеза, гликогенолиза, подавления утилизации глюкозы другими тканями под влиянием увеличения секреции глюкагона и уменьшения потребления глюкозы инсулинзависимыми тканями в результате снижения продукции Инсулина. В течение суток мозговая ткань поглощает от 100 до 150 г глюкозы. Гиперпродукция глюкагона стимулирует липолиз, что повышает в крови уровень СЖК, которые используются сердечной и другими мышцами, печенью, почками в качестве энергетического материала. При длительном голодании источником энергии становятся и кетокислоты, образующиеся в печени. При естественном голодании (в течение ночи) или при длительных перерывах в приеме пищи (6-12 ч) энергетические потребности инсулинзависимых тканей организма поддерживаются за счет жирных кислот, образующихся во время липолиза.

После приема пищи (углеводистой) наблюдаются быстрое повышение уровня инсулина и уменьшение содержания глюкагона в крови. Первый вызывает ускорение синтеза гликогена и утилизацию глюкозы инсулинзависимыми тканями. Белковая пища (например, 200 г мяса) стимулирует резкий подъем концентрации в крови глюкагона (на 50-100 %) и незначительный – инсулина, что способствует усилению глюконеогенеза и увеличению продукции глюкозы печенью.

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

Источник статьи: http://kancler32.ru/jendokrinnaja-funkcija-podzheludochnoj-zhelezy-i-ee-znachenie/

В чем заключается эндокринная роль поджелудочная железа

Функции поджелудочной железы

Просмотров: 18092
Комментариев: 1

Поджелудочная железа – это орган пищеварительной системы, обеспечивающий переваривание питательных веществ – жиров, белков, углеводов. Вместе с тем, поджелудочная железа – это орган эндокринной системы. Она секретирует в кровь гормоны, регулирующие все виды обмена веществ. Таким образом, поджелудочная железа выполняет две функции – эндокринную и экзокринную.

Эндокринная функция поджелудочной железы

Поджелудочная железа секретирует в кровь пять гормонов, регулирующих в основном углеводный обмен. Эндокринная часть поджелудочной железы составляет не более 2% от всей массы органа. Она представлена островками Лангерганса – скоплениями клеток, которые находятся в окружении паренхимы поджелудочной железы.

Большинство островков Лангерганса сосредоточены в хвосте органа. По этой причине поражение хвоста поджелудочной железы воспалительным процессом часто приводит к недостаточности эндокринной функции органа. В островках Лангерганса находятся клетки разных типов, секретирующие разные гормоны. Больше всего в них содержится бета-клеток, вырабатывающих инсулин.

Функции гормонов поджелудочной железы

Поджелудочная железа вырабатывает пять гормонов. Два из них существенно влияют на обмен веществ. Это инсулин и глюкагон. Другие гомоны имеют меньшее значение для регуляции метаболизма, либо секретируются поджелудочной железой в малых количествах.

Инсулин
Анаболический гормон, основной функцией которого является транспорт сахара в клетки организма. Он снижает уровень глюкозы в крови за счет:

  • изменения проницаемости клеточных мембран для глюкозы
  • активации ферментов, обеспечивающих расщепление глюкозы
  • стимуляции превращения глюкозы в гликоген
  • стимуляции превращения глюкозы в жир
  • угнетения образования глюкозы в печени
  • стимулирует синтез белков и жиров
  • препятствует расщеплению триглицеридов, гликогена и белков

Глюкагон
Принимает важнейшее участие в углеводном обмене. Основная функция этого гормона поджелудочной железы – стимуляция гликогенолиза (процесс расщепления гликогена, в процессе которого в кровь выделяется глюкоза).

  • активирует процесс образования глюкозы в печени
  • стимулирует расщепление жира
  • стимулирует синтез кетоновых тел

Физиологическое действие глюкагона:

  • повышает артериальное давление и частоту пульса
  • повышает силу сердечных сокращений
  • способствует расслаблению гладкой мускулатуры
  • усиливает кровоснабжение мышц
  • повышает секрецию адреналина и других катехоламинов

Соматостатин
Вырабатывается не только в поджелудочной железе, но и в гипоталамусе. Его единственная функция – это подавление секреции других биологически активных веществ:

  • серотонина
  • соматотропина
  • тиреотропного гормона
  • инсулина
  • глюкагона

Вазоактивный интестинальный пептид
Стимулирует перистальтику кишечника, увеличивает приток крови к органам ЖКТ, угнетает выработку соляной кислоты, усиливает выработку пепсиногена в желудке.

Панкреатический полипептид
Стимулирует желудочную секрецию. Подавляет внешнесекреторную функцию ПЖ.

Физиологическое действие глюкагона поджелудочной железы

Экзокринная функция ПЖ заключается в секреции панкреатического сока. По системе протоков он попадает в двенадцатиперстную кишку, где участвует в процессе пищеварения. Секрет поджелудочной железы содержит:

  • ферменты — расщепляют питательные вещества, поступающие в кишечник с едой
  • ионы бикарбоната — ощелачивают желудочный сок, поступающий в двенадцатиперстную кишку из желудка

Регуляция экзокринной функции поджелудочной железы осуществляется гормонами, которые вырабатываются в желудке и кишечнике:

  • холецистокинин
  • секретин
  • гастрин

Все эти вещества угнетают активность поджелудочной железы. Они вырабатываются в ответ на растяжение стенок желудка и кишечника. Их секрецию стимулирует панкреатический сок, попадающий в двенадцатиперстную кишку после приема пищи.

Функции ферментов поджелудочной железы

ПЖ вырабатывает ферменты, которые переваривают все виды питательных веществ – углеводы, белки и жиры.

1. Протеазы
Ферменты, расщепляющие белки. Учитывая, что разновидностей протеинов много, поджелудочная железа вырабатывает несколько видов протеолитических ферментов:

  • химотрипсин
  • эластаза
  • трипсин
  • карбоксипептидаза

2. Липаза
Этот фермент расщепляет жиры.

3. Амилаза
Фермент, расщепляющий полисахариды (сложные углеводы).

4. Нуклеазы
Несколько видов ферментов, которые расщепляют нуклеиновые кислоты (ДНК и РНК).

Нарушение функции поджелудочной железы

Некоторые болезни поджелудочной железы сопровождаются нарушением функции этого органа. Чаще всего это происходит при остром или хроническом панкреатите, когда вследствие воспалительного процесса уничтожается большая часть паренхимы поджелудочной железы. Экзокринная функция со временем нарушается у большинства больных хроническим панкреатитом. Эндокринная – приблизительно у четверти пациентов.

Нарушение экзокринной функции сопровождается расстройством пищеварения и диспепсическими симптомами. Для этого состояния характерны следующие признаки:

  • полифекалия
  • частый и жидкий стул
  • наличие жира в кале
  • вздутие кишечника
  • похудение

При нарушении эндокринной функции поджелудочной железы обычно развивается сахарный диабет. Он протекает легче, чем классический диабет первого типа, так как не все бета-клетки островков Лангерганса уничтожаются. Тем не менее, через несколько лет от начала заболевания у пациента обычно возникает потребность в инъекциях инсулина. Иногда удается нормализовать уровень глюкозы в крови при помощи диеты и сахароснижающих препаратов.

Поджелудочная
железа – железа со смешанной функцией.
Морфологической единицей железы служат
островки Лангерганса, преимущественно
они расположены в хвосте железы.
Бета-клетки островков вырабатывают
инсулин, альфа-клетки – глюкагон,
дельта-клетки – соматостатин. В
экстрактах ткани поджелудочной железы
обнаружены гормоны ваготонин и
центропнеин.

Инсулин
регулирует углеводный обмен, снижает
концентрацию сахара в крови, способствует
превращению глюкозы в гликоген в печени
и мышцах. Он повышает проницаемость
клеточных мембран для глюкозы: попадая
внутрь клетки, глюкоза усваивается.
Инсулин задерживает распад белков и
превращение их в глюкозу, стимулирует
синтез белка из аминокислот и их
активный транспорт в клетку, регулирует
жировой обмен путем образования высших
жирных кислот из продуктов углеводного
обмена, тормозит мобилизацию жира из
жировой ткани.

В
бета-клетках инсулин образуется из
своего предшественника проинсулина.
Он переносится в клеточные аппарат
Гольджи, где происходят начальные
стадии превращения проинсулина в
инсулин.

В
основе регуляции
инсулина
лежит нормальное содержание глюкозы
в крови: гипергликемия приводит к
увеличению поступления инсулина в
кровь, и наоборот.

Паравентрикулярные
ядра гипоталамуса повышают активность
при гипергликемии, возбуждение идет
в продолговатый мозг, оттуда в ганглии
поджелудочной железы и к бета-клеткам,
что усиливает образование инсулина и
его секрецию. При гипогликемии ядра
гипоталамуса снижают свою активность,
и секреция инсулина уменьшается.

Гипергликемия
непосредственно приводит в возбуждение
рецепторный аппарат островков
Лангерганса, что увеличивает секрецию
инсулина. Глюкоза также непосредственно
действует на бета-клетки, что ведет к
высвобождению инсулина.

Глюкагон
повышает количество глюкозы, что также
ведет к усилению продукции инсулина.
Аналогично действует гормоны
надпочечников.

ВНС
регулирует выработку инсулина
посредством блуждающего и симпатического
нервов. Блуждающий нерв стимулирует
выделение инсулина, а симпатический
тормозит.

Количество
инсулина в крови определяется активностью
фермента инсулиназы, который разрушает
гормон. Наибольшее количество фермента
находится в печени и мышцах. При
однократном протекании крови через
печень разрушается до 50 % находящегося
в крови инсулина.

Важную
роль в регуляции секреции инсулина
выполняет гормон соматостатин, который
образуется в ядрах гипоталамуса и
дельта-клетках поджелудочной железы.
Соматостатин тормозит секрецию
инсулина.

Активность
инсулина выражается в лабораторных и
клинических единицах.

Глюкагон
принимает участие в регуляции углеводного
обмена, по действию на обмен углеводов
он является антагонистом инсулина.
Глюкагон расщепляет гликоген в печени
до глюкозы, концентрация глюкозы в
крови повышается. Глюкагон стимулирует
расщепление жиров в жировой ткани.

Механизм
действия глюкагона обусловлен его
взаимодействием с особыми специфическими
рецепторами, которые находятся на
клеточной мембране. При связи глюкагона
с ними увеличивается активность
фермента аденилатциклазы и концентрации
цАМФ, цАМФ способствует процессу
гликогенолиза.

Регуляция
секреции глюкагона.
На образование глюкагона в альфа-клетках
оказывает влияние уровень глюкозы в
крови. При повышении глюкозы в крови
происходит торможение секреции
глюкагона, при понижении – увеличение.
На образование глюкагона оказывает
влияние и передняя доля гипофиза.

Гормон
роста соматотропин
повышает
активность альфа-клеток. В противоположность
этому гормон дельта-клетки – соматостатин
тормозит образование и секрецию
глюкагона, так как он блокирует вхождение
в альфа-клетки ионов Ca, которые необходимы
для образования и секреции глюкагона.

Липокаин
способствует утилизации жиров за счет
стимуляции образования липидов и
окисления жирных кислот в печени, он
предотвращает жировое перерождение
печени.

Ваготонин
повышает
тонус блуждающих нервов, усиливает их
активность.

Центропнеин
участвует в возбуждении дыхательного
центра, содействует расслаблению
гладкой мускулатуры бронхов, повышает
способность гемоглобина связывать
кислород, улучшает транспорт кислорода.

Нарушение
функции поджелудочной железы
.

Уменьшение
секреции инсулина приводит к развитию
сахарного диабета, основными симптомами
которого являются гипергликемия,
глюкозурия, полиурия (до 10 л в сутки),
полифагия (усиленный аппетит),
полидиспепсия (повышенная жажда).

Увеличение
сахара в крови у больных сахарным
диабетом является результатом потери
способности печени синтезировать
гликоген из глюкозы, а клеток –
утилизировать глюкозу. В мышцах также
замедляется процесс образования и
отложения гликогена.

У
больных сахарным диабетом нарушаются
все виды обмена.

Опубликовано: 15 октября 2014 в 10:28

Поджелудочная железа – внутренний орган человека, обладающий множеством различных функций. Как правило, выделяют две основных, таких как: экзокринная и эндокринная. Какими же основными особенностями обладает последняя, и в чем заключается её важность для организма?

Эндокринная функция поджелудочной железы осуществляется за счет клеток определенного типа. Они получили название островки Лангерганса, и, несмотря на то, что по размеру они минимальны, и не составляют даже 10-тую часть всего объема поджелудочной железы, функции, которые реализуются с их помощью, играют важную роль не только для процесса пищеварения, но и для всего организма.

Стоит отметить, что клетки, расположенные в виде островков, подразделяются на несколько различных видов. Они различаются в зависимости от того, какой гормон производится с их помощью. В наибольшем же количестве представлены клетки, секретирующие гормон инсулин, ведь именно они реализуют основную часть эндокринной функции поджелудочной железы. Недостаток или же избыток инсулина может привести к развитию многих серьезных недугов, в частности, сахарного диабета.

Эндокринная дисфункция поджелудочной железы

Что немаловажно, данная функция отвечает за обменные процессы во всем организме. Так, недостаток хотя бы одного из данных гормонов может привести к чрезмерному увеличению количества глюкозы в организме, общему ухудшению состояния, а также негативно отражается на работе многих иных органов.

Нередко с возрастом наблюдается эндокринная недостаточность поджелудочной железы, которая проявляется в снижении выработки инсулина. И в данном случае очень важно своевременно заметить появление первоочередных симптомов, а именно: частое мочеиспускание, постоянная жажда, слабость. Поэтому столь важно своевременно диагностировать начало возможного заболевания, сделав все возможное для того, чтобы наладить работу органа.

Таким образом, эндокринная функция поджелудочной железы играет важную роль для всего организма, влияя на обмен веществ, а также выработку основных гормонов, необходимых для регуляции уровня сахара в организме. Для того же, чтобы процесс проходил без каких-либо сбоев или же сложностей, необходимо заботиться о состоянии данного органа, не перегружая его неправильным питанием. В случае же каких-либо изменений стоит, не теряя времени, обратиться к специалисту, для назначения своевременного лечения.

Поджелудочная железа в эндокринной системе

Понятие эндокринной системы организма предполагает совокупность желез внутренней секреции, вырабатывающие определенные вещества, которые называются гормонами. Именно эндокринная система поджелудочной железы способна обеспечить гуморальную регуляцию в организме. Если говорить о ее работе в целом, хочется отметить, что она выполняет те же функции, что и нервная, а также иммунная системы. Все они тесно взаимосвязаны между собой, так как все процессы в организме человека находятся под их контролем. Эндокринную систему образуют железы внутренней секреции. К ним относят надпочечники, гипофиз, плаценту, яичники, а также щитовидку. К органам внутренней секреции относят и часть поджелудочной.

Эндокринная дисфункция поджелудочной железы может повлечь за собой развитие сахарного диабета. Всем известно, насколько данное заболевание является популярным и распространенным в мире. С каждым годом число заболевших растет. В основном, таким заболеванием страдают дети в возрасте до 16 лет. Чтобы сахарный диабет не стал вашим диагнозом, необходимо в обязательном порядке следить за уровнем сахара в крови. Именно поэтому важно посещать врача, а также сдавать все необходимые анализы.

Поджелудочная железа расположена на задней стенке брюшной полости, позади желудка, на уровне L1-L2 и простирается от двенадцатиперстной кишки до ворот селезенки. Длина ее составляет около 15 см, масса — около 100 г. В поджелудочной железе различают головку, располагающуюся в дуге двенадцатиперстной кишки, тело и хвост, достигающий ворот селезенки и лежащий ретроперитонеально. Кровоснабжение поджелудочной железы осуществляется селезеночной и верхней мезентериальной артерией. Венозная кровь поступает в селезеночную и верхнюю мезентериальную вены. Иннервируется поджелудочная железа симпатическими и парасимпатическими нервами, терминальные волокна которых контактируют с клеточной мембраной островковых клеток.

Поджелудочная железа обладает экзокринной и эндокринной функцией. Последняя осуществляется островками Лангерганса, которые составляют около 1-3 % массы железы (от 1 до 1,5 млн). Диаметр каждого — около 150 мкм. В одном островке содержится от 80 до 200 клеток. Различают несколько их видов по способности секретировать полипептидные гормоны. А-клетки продуцируют глюкагон, В-клетки — инсулин, D-клетки — соматостатин. Обнаружен еще ряд островковых клеток, которые предположительно могут продуцировать вазоактивный интерстициальный полипептид (ВИП), гастроинтестинальный пептид (ГИП) и панкреатический полипептид. В-клетки локализуются в центре островка, а остальные — по его периферии. Основную массу — 60 % клеток — составляют В-клетки, 25 % — А-клетки, 10 % — D-клетки, остальные — 5 % массы.

Инсулин образуется в В-клетках из его предшественника — проинсулина, который синтезируется на рибосомах грубой эндоплазматической сети. Проинсулин состоит из 3 пептидных цепей (А, В и С). А- и В-цепочки соединены дисульфидными мостиками, С-пептид связывает А- и В-цепи. Молекулярная масса проинсулина — 9000 дальтон. Синтезированный проинсулин поступает в аппарат Гольджи, где под влиянием протеолитических ферментов расщепляется на молекулу С-пептида с молекулярной массой 3000 дальтон и молекулу инсулина с молекулярной массой 6000 дальтон. А-цепь инсулина состоит из 21 аминокислотного остатка, В-цепь — из 30, а С-пептид — из 27-33. Предшественником проинсулина в процессе его биосинтеза является препроинсулин, который отличается от первого наличием еще одной пептидной цепочки, состоящей из 23 аминокислот и присоединяющейся к свободному концу В-цепи. Молекулярная масса препроинсулина — 11 500 дальтон. Он быстро превращается в проинсулин на полисомах. Из аппарата Гольджи (пластинчатый комплекс) инсулин, С-пептид и частично проинсулин поступают в везикулы, где первый связывается с цинком и депонируется в кристаллическом состоянии. Под влиянием различных стимулов везикулы продвигаются к цитоплазматической мембране и путем эмиоцитоза освобождают инсулин в растворенном виде в прекапиллярное пространство.

Самый мощный стимулятор его секреции — глюкоза, которая взаимодействует с рецепторами цитоплазматическои мембраны. Ответ инсулина на ее воздействие является двухфазным: первая фаза — быстрая — соответствует выбросу запасов синтезированного инсулина (1-й пул), вторая — медленная — характеризует скорость его синтеза (2-й пул). Сигнал от цитоплазматического фермента — аденилатциклазы — передается на систему цАМФ, мобилизующую из митохондрий кальций, который принимает участие в освобождении инсулина. Кроме глюкозы, стимулирующим влиянием на освобождение и секрецию инсулина обладают аминокислоты (аргинин, лейцин), глюкагон, гастрин, секретин, панкреозимин, желудочный ингибирующии полипептид, неиротензин, бомбезин, сульфаниламидные препараты, бета-адреностимуляторы, глюкокортикоиды, СТГ, АКТГ. Подавляют секрецию и освобождение инсулина гипогликемия, соматостатин, никотиновая кислота, диазоксид, альфа-адреностимуляция, фенитоин, фенотиазины.

Инсулин в крови находится в свободном (иммунореактивный инсулин, ИРИ) и связанном с белками плазмы состоянии. Деградация инсулина происходит в печени (до 80 %), почках и жировой ткани под влиянием глютатионтрансферазы и глютатионредуктазы (в печени), инсулиназы (в почках), протеолитических ферментов (в жировой ткани). Проинсулин и С-пептид также подвергаются деградации в печени, но значительно медленнее.

Инсулин дает множественный эффект на инсулинзависимые ткани (печень, мышцы, жировая ткань). На почечную и нервную ткани, хрусталик, эритроциты он не оказывает непосредственного действия. Инсулин является анаболическим гормоном, усиливающим синтез углеводов, белков, нуклеиновых кислот и жира. Его влияние на углеводный обмен выражается в увеличении транспорта глюкозы в клетки инсулинзависимых тканей, стимуляции синтеза гликогена в печени и подавлении глюконеогенеза, и гликогенолиза, что вызывает понижение уровня сахара в крови. Влияние инсулина на белковый обмен выражается в стимуляции транспорта аминокислот через цитоплазматическую мембрану клеток, синтеза белка и торможения его распада. Его участие в жировом обмене характеризуется включением жирных кислот в триглицериды жировой ткани, стимуляцией синтеза липидов и подавлением липолиза.

Биологический эффект инсулина обусловлен его способностью связываться со специфическими рецепторами клеточной цитоплазматическои мембраны. После соединения с ними сигнал через встроенный в оболочку клетки фермент — аденилатциклазу — передается на систему цАМФ, которая при участии кальция и магния регулирует синтез белка и утилизацию глюкозы.

Базальная концентрация инсулина, определяемая радиоиммунологически, составляет у здоровых 15-20 мкЕД/мл. После пероральной нагрузки глюкозой (100 г) уровень его через 1 ч повышается в 5-10 раз по сравнению с исходным. Скорость секреции инсулина натощак составляет 0,5-1 ЕД/ч, а после приема пищи увеличивается до 2,5-5 ЕД/ч. Секрецию инсулина увеличивает парасимпатическая и уменьшает симпатическая стимуляция.

Глюкагон является одноцепочечным полипептидом с молекулярной массой 3485 дальтон. Он состоит из 29 аминокислотных остатков. Расщепляется в организме при помощи протеолитических ферментов. Секрецию глюкагона регулируют глюкоза, аминокислоты, гастроинтестинальные гормоны и симпатическая нервная система. Ее усиливают гипогликемия, аргинин, гастроинтестинальные гормоны, особенно панкреозимин, факторы, стимулирующие симпатическую нервную систему (физическая нагрузка и др.), уменьшение содержания в крови СЖК.

Угнетают продукцию глюкагона соматостатин, гипергликемия, повышенный уровень СЖК в крови. Содержание глюкагона в крови повышается при декомпенси-рованном сахарном диабете, глюкагономе. Период полураспада глюкагона составляет 10 мин. Инактивируется он преимущественно в печени и почках путем расщепления на неактивные фрагменты под влиянием ферментов карбоксипептидазы, трипсина, хемотрипсина и др.

Основной механизм действия глюкагона характеризуется увеличением продукции глюкозы печенью путем стимуляции его распада и активации глюконеогенеза. Глюкагон связывается с рецепторами мембраны гепатоцитов и активирует фермент аденилатциклазу, которая стимулирует образование цАМФ. При этом происходит накопление активной формы фосфорилазы, участвующей в процессе глюконеогенеза. Кроме того, подавляется образование ключевых гликолитических ферментов и стимулируется выделение энзимов, участвующих в процессе глюконеогенеза. Другая глюкагонзависимая ткань — жировая. Связываясь с рецепторами адипоцитов, глюкагон способствует гидролизу триглицеридов с образованием глицерина и СЖК. Этот эффект осуществляется путем стимуляции цАМФ и активации гормоночувствительной липазы. Усиление липолиза сопровождается повышением в крови СЖК, включением их в печень и образованием кетокислот. Глюкагон стимулирует гликогенолиз в сердечной мышце, что способствует увеличению сердечного выброса, расширению артериол и уменьшению общего периферического сопротивления, уменьшает агрегацию тромбоцитов, секрецию гастри-на, панкреозимина и панкреатических ферментов. Образование инсулина, соматотропного гормона, кальцитонина, катехоламинов, выделение жидкости и электролитов с мочой под влиянием глюкагона увеличиваются. Его базальный уровень в плазме крови составляет 50-70 пг/мл. После приема белковой пищи, во время голодания, при хронических заболеваниях печени, хронической почечной недостаточности, глюкагономе содержание глюкагона увеличивается.

Соматостатин представляет собой тетрадекапептид с молекулярной массой 1600 дальтон, состоящий из 13 аминокислотных остатков с одним дисульфидным мостиком. Впервые соматостатин был обнаружен в переднем гипоталамусе, а затем — в нервных окончаниях, синаптических пузырьках, поджелудочной железе, желудочно-кишечном тракте, щитовидной железе, сетчатке. Наибольшее количество гормона образуется в переднем гипоталамусе и D-клетках поджелудочной железы. Биологическая роль соматостатина заключается в подавлении секреции соматотропного гормона, АКТГ, ТТГ, гастрина, глюкагона, инсулина, ренина, секретина, вазоактивного желудочного пептида (ВЖП), желудочного сока, панкреатических ферментов и электролитов. Он понижает абсорбцию ксилозы, сократимость желчного пузыря, кровоток внутренних органов (на 30-40 %), перистальтику кишечника, а также уменьшает освобождение ацетилхолина из нервных окончаний и электровозбудимость нервов. Период полураспада парентерально введенного соматостатина составляет 1-2 мин, что позволяет рассматривать его как гормон и нейротрансмиттер. Многие эффекты соматостатина опосредуются через его влияние на вышеперечисленные органы и ткани. Механизм же его действия на клеточном уровне пока неясен. Содержание соматостатина в плазме крови здоровых лиц составляет 10-25 пг/л и повышается у больных сахарным диабетом I типа, акромегалией и при D-клеточной опухоли поджелудочной железы (соматостатиноме).

Роль инсулина, глюкагона и соматостатина в гомеостазе. В энергетическом балансе организма основную роль играют инсулин и глюкагон, которые поддерживают его на определенном уровне при различных состояниях организма. Во время голодания уровень инсулина в крови понижается, а глюкагона — повышается, особенно на 3-5-й день голодания (примерно в 3-5 раз). Увеличение секреции глюкагона вызывает повышенный распад белка в мышцах и увеличивает процесс глюконеогенеза, что способствует пополнению запасов гликогена в печени. Таким образом, постоянный уровень глюкозы в крови, необходимый для функционирования мозга, эритроцитов, мозгового слоя почек, поддерживается за счет усиления глюконеогенеза, гликогенолиза, подавления утилизации глюкозы другими тканями под влиянием увеличения секреции глюкагона и уменьшения потребления глюкозы инсулинзависимыми тканями в результате снижения продукции Инсулина. В течение суток мозговая ткань поглощает от 100 до 150 г глюкозы. Гиперпродукция глюкагона стимулирует липолиз, что повышает в крови уровень СЖК, которые используются сердечной и другими мышцами, печенью, почками в качестве энергетического материала. При длительном голодании источником энергии становятся и кетокислоты, образующиеся в печени. При естественном голодании (в течение ночи) или при длительных перерывах в приеме пищи (6-12 ч) энергетические потребности инсулинзависимых тканей организма поддерживаются за счет жирных кислот, образующихся во время липолиза.

После приема пищи (углеводистой) наблюдаются быстрое повышение уровня инсулина и уменьшение содержания глюкагона в крови. Первый вызывает ускорение синтеза гликогена и утилизацию глюкозы инсулинзависимыми тканями. Белковая пища (например, 200 г мяса) стимулирует резкий подъем концентрации в крови глюкагона (на 50-100 %) и незначительный — инсулина, что способствует усилению глюконеогенеза и увеличению продукции глюкозы печенью.

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

Источник статьи: http://mr-gergebil.ru/v-chem-zakljuchaetsja-jendokrinnaja-rol-podzheludochnaja-zheleza/

Медицина и человек